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SUMMARY

Defects in semiconductors lead to poor reliability and loss of yield of
electronic devices fabricated from these materials. Currently, x-ray
topography is used to characterize semiconductor wafers. However, the long
time needed to characterize each sample by this technique precludes its use
for each individual sample. A technique thait is fast, accurate, efficient
and able to characterize each sample in a reasonable time is, hence,
desirable. One such technique utilizing infrared piezo-birefringence is
investigated in this work. The technique is based on changes in the
refractive index of the material under stress. The stress could be from an
applied external load or due to defects in the material generated during its
growth and/or processing. The purpose of this research is to investigate the
use of infrared birefringence in defect characterization of semiconductor
materials.

As a first step towards defect image simulation, the case of
diametrically loaded discs of semiconductor materials is examined. This is
done to obtain a better understanding of the simulation algorithm prior to
its subsequent use in defect characterization. A dark-field plane
polariscope was constructed with a He-Ne laser tuned to 1.15 )Im wavelength
used as the light source. This particular wavelength was selected as the
semiconductor materials of primary interest, namely Si and GaAs, are
transparent at this wavelength in the near infrared. The computer simulated
images matched remarkably well with the experimentally observed ones.

The behavior of the stress-optic coefficient C was also investigated,
which has been treated as a constant by other investigators in earlier
works. In this work, it was found that for (100) oriented Si and GaAs discs
under diametrical compression, the stress-optic coefficient C is a strong
function of position for a given load, and also changes with the orientation
of the applied load with respect to the principal crystal axes. However, no
such dependence was found for (111) oriented Si and GaAs discs under
diametrical compression, as expected from the crystal symmetry. The values
of C for (190) oriented Si disc under diametrical compression ranged from
2.0 x 10-1 cm2 /dyne to 3.0 x 10-12 cm2/dyne and for (100), orlented
GaAs disc under diametrical compression ranged from 0.8 x 10-1 cm /dyne
to 2.6 x 10-12 cm2 /dyne. The corresponding figures for (111) oriented Si
and GaAs discs under diametrical compression are 2.33 x 10-12 cm2 /dyne
and 1.94 x 10-12 cm5/dyne, respectively.

Next, an algorithm was developed for simulation of images of edge and
screw dislocations In semiconductors. For simplification purposes, image
simulations were carried out for edge and screw dislocations when the
dislocation line, the Burgers vector and the direction of the incident light
were along the crystal principal axes. For this special case when the
incident light was perpendicular to the Burgers vector, the computer
simulation found distinguishing features between an edge and a screw
dislocation. When the polarization angle of the incident light with respect
to the dislocation slip plane was 450, the image of a screw dislocation was
found to disappear. Whereas, for the same polarization angle, the image of
an edge dislocation was brightest with a four-petal rosette pattern with
equal lobes.
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An extension of this work 'is being carried out in our laboratory to
generalize the algorithm for screw and edge dislocations to take Into account
any arbitrary orientation of the dislocation line and the Burgers vector
alongwith any arbitrary direction of the incident light. In principle, a
variety of these images for varying polarization angles of the incident light
can be generated and stored on a computer. A sample with an unknown defect
can be placed under the polariscope and the images monitored for varying
incident light polarization angles and its incident directions. Then an
image matching procedure can be applied to match the experimentally generated
images with the simulated ones stored in the computer. A direct comparison
will then give the type of defect, its location, and its orientation with
respect to the principal crystal planes.

i .
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FOREWORD

This research task was started with Dr. Craig S. Hartley as the project
director in August, 1984. However, due to a change in plans, Dr. Hartley
left LSU in August, 1986. Since then, the project was carried out under the
direction of Dr. Pratul K. Ajmera.
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1. INTRODUCTION

Defects in semiconductor crystals play a major role in the final
yield of a manufacturing process, where the yield is defined as the number of
good chips on a wafer divided by the total number of chips on the wafer. The
defects also have a significant impact on device properties and parameters
such as minority carrier lifetime, carrier mobility, carrier generation rate,
impurity diffusion, optical properties - such as the index of refraction and
the optical absorption spectrum. These factors can lead to poor reliability
of the device and low yield. An efficient way of characterizing these
defects will not only improve the yield of the manufacturing process, but
also improve the device performance.

The most commonly used technique today for defect characterization is
X-Ray topography [1]. The theory behind the technique is Bragg's law of
diffraction, generalized by Laue. However, the relatively long exposure time
needed for characterizing one wafer makes the turn-around time quite long (of
the order of 1-2 days). This fact precludes testing each individual sample,
and the usability of a lot is determined by statistical estimates. The fact
that all the wafers are not tested allows some defective wafers to pass
through. Therefore, a technique which is fast, accurate, and efficient, and
which can characterize each sample in a reasonable time is likely to improve
the yield and device performance. The technique being considered here is
infrared piezo-birefringence, which may prove useful in fast and accurate
characterization of defects in semiconductor materials.

Most semiconductor crystals such as silicon and gallium arsenide
employed for fabricating electronic devices are optically isotropic. Both
these materials are opaque to visible light but are transparent in the near
infrared. Silicon having a band gap of 1.12 eV has an absorption cutoff at
1.11 pum. The corresponding values for gallium arsenide are 1.42 eV and
0.89 pm, respectively. Light with wavelength longer than 1.11 Vm will
normally pass through these two materials. The light does not experience any
relative phase change while traversing through these optically isotropic
samples. Therefore, if a sample is placed between the polarizer and the
analyzer with their axes crossed, a dark image will be seen. However, under
stress, the sample becomes birefringent. The stress can be applied
externally or generated internally due to defects, processing, or material
preparation. The light while passing through the stressed regions of the
sample splits into two components in mutually orthogonal directions having
different refractive indices and thus velocities along the two directions. A
phase difference builds up between the two components as they traverse the
sample. Now, if the sample is viewed through a crossed polarizer and
analyzer set-up, an image will be seen. The image will be characteristic of
the phase shift between the two components. For each kind of defect, the
stress fields will be different and thus different fringe patterns or images
will be seen for different kinds of defects such as an edge dislocation or a
screw dislocation. This phenomenon of stress-induced splitting of the
refractive index into two components is known as piezo-birefringence.

Giardini [2] studied the phenomenon of birefringence in silicon and
obtained the values of its piezo-optic coefficients relating the stresses to
the changes in the refractive indices. Lederhandler [3] and Hornstra and

tI



Penning [4] observed residual stresses in silicon by the infrared
birefringence method. These stresses were attributed to severe thermal
gradients present during crystal growth which resulted in frozen-in strain In
the material. Jenkins et.al. [5-6] have studied images of dislocations in
silicon samples by the piezo-birefringence method. The stresses produced by
the dislocations cause the normally optically isotropic silicon to become
birefringent.

In the work carried out here, infrared piezo-birefringence is utilized
to examine image patterns obtained by a dark field plane polariscope
from infrared transparent semiconductor samples under stress. The normally
optically isotropic semiconductor samples become birefringent due to the
stress. In this work, image patterns for defects have been simulated on a
computer. In some cases, the simulated images are compared to the
experimentally observed ones. As a first step to obtain defect images and to
obtain a better understanding of the computer image simulation algorithm;
images were simulated for externally applied loads on Si and GaAs discs. The s
experimentally observed and simulated images were compared. Section 2
describes the image simulation algorithms. Subsections 2.1-2.3 discuss the
algorithms for semiconductor discs under diametrical compression, edge
dislocations, and screw dislocations, respectively.

Section 3 outlines the experimental work done and discussions about the
results. Subsection 3.1 gives the experimental set-up utilized in this
work. Subsection 3.2 illustrates the results for diametricall1 compressed
semiconductor discs. The experimentally obtained images are compared with
the simulated ones. In our work, we investigated the behavior of the
stress-optic coefficient C, which was taken to be a constant in earlier
works by other investigators. The results of our findings are given in S

Subsection 3.3. Subsection 3.4 discusses the simulation results for edge and
screw dislocations. Section 4 gives the summary of our work along with the
conclusions.

N,



2. IMAGE SIMULATIONS

2.1 Semiconductor Discs under Diametrical Compression

In this section, image simulation is carried out for infrared
transparent semiconductor discs under externally applied load in the form of
diametrical compression. This is done to obtain a better understanding of
the simulation algorithm and as a first step towards obtaining simulation
images for defects in semiconductors.

The disc under consideration is of radius R, thickness d and under a
diametrical compression load P. The loading axes system is defined in
Fig.2.1.1. The loading axis x2 is chosen arbitrarily and d ýs not
necessarily coincide with any of the crystal principal axes. Axis xI is
perpendicular to axis x2 and lies on the sample surface and axis x3 is
coming out from the plane of the paper. The stress at any point (xl,x2)
for a disc under diametrical compression is given by [7]

-y 2P F(R-x 2)xl 2 +(R+x 2)xl 2- 1(.11
01 2PI'd - + r2 L] (2.1.2)

2r 12 r2  1 , (2.r41)

12 T_ r 1 4 r2 4

where r 1 2 12 + (R-x 2 ) 2 and rx22 - x12 + (R+x2)2. Here o j is the stress

produced in direction xi transmitted across a surface perpendicular to
direction xj. The all and 022 components are the normal components of
stress while 012 is the shear component with 012 = 021 because there is
no resultant torque in the system. In order to compute the stress components
oij, the sample is divided into small squares and the stresses are
calculated at the center of each of these squares. The semiconductor
materials of primary interest in this work are Si and GaAs both of which
belong to the cubic class of crystal symmetry. The indicatrix of a cubic
crystal under unstressed condition is spherical with no preferred optic
axis. However, under stress the indicatrix changes to an ellipsoid of
revolution and can be given by a quadric surface [8]

Bt Bx k x k = 1 (k=1,2,3; W=1,2,3) (2.1.4)

where k and I are summation indices and Bkk are the elements of the

dielectric impermeability matrix defined by Bk = + ABkt, where B are

the elements of the dielectric impermeability tensor. For an isotropic

material, the only non-zero values of 8 are given by Bll 0 B22 0 B33 Z Bo

3 Ir
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Fig.2.1.1. The sample geometry. Axis x3 is the outward normal
from the plane of the paper.
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where B 0 2 and where n0 is the isotropic value of the refractive index.
no

Here, ABkQ are the changes in Bk0 due to the stress components. When the

light is incident along -X3 direction, the intersection ellipse as obtained
from Eqn.(2.1.4) is given by:

(Bo0+AB11)x2 + (B0+AB2 2 )x 2
2 + ABl2Xl2 + ABx 2 x1 = 1. (2.1.5)

The diagonalization of Eqn.(2.1.5) would give the major and the minor
axes of the ellipse formed by the intersection of the incident light
direction with the indicatrix. The result of the diagonalization yields B1
and B2 , the dielectric impermeabilities along the minor and the major axes
of the index ellipse respectively. They are given as:

AB11 + AB2 2  2 /2
B1 = B0 + + ½ [(AB1 1-AB2 2 ) + 4ABAB21 (2.1.6)

and

BnB AB11 + AB2 2  1 ( _AB22 /4AB1AB2 /2. (B2 Bo 2 - 2 [(2B+ 21 (2.1.7)

The corresponding refractive indices are given by n1 = 1/181 and n2
ll/B2. Due to these local differences in the refractive indices, the
components of a plane polarized light beam traversing the sample will show a
phase shift. When the light emerging from the sample is viewed through an
analyzer, the resultant image will show a pattern characteristic of this
phase shift.

The piezo-optic coefficients rinkt are used to compute the changes in
the dielectric impermeability elements ABkU. The piezo-optic coefficients
are conventionally defined along the crystal principal axes. Therefore, the
computation is carried out in two steps. First, the stress components a--
obtained from Eqns.(2.1.1-2.1.3) are transformed to the crystal principal
axes. Then, the changes in the dielectric impermeability elements are
obtained in the crystal principal axes system. These are then converted back
to the loading axes system.

The equations for transforming the stress components from the loading
axes system (x 1 ,x 2 ,x 3 ) to the crystal principal axes system (x ,x PP are

given by [8] as

C 1 a'i ajolj (1-1,2,3; j=1,2,3) (2.1.8)
K i~ji,J

where I and j are summation indices and aki is the direction cosine between
the crystal principal axis x'k and the loading axis xi. The calculation
of the direction cosines for (100) and (111) oriented samples under arbitrary
loading direction are discussed in Appendices 6.1 and 6.2, respectively.



In terms of the piezo-optic coefficients Tijkt, the changes in the
dielectric impermeability AB'ij in the crystal principal axes system due to
the loading are given by [8] as

ABi J kt 1Trijkk (k=1,2,3; E=1,2,3) (2.1.9)

where k and t are summation indices and O'kt are given by Eqn.(2.1.8). The
piezo-optic coefficients Tijkl form a fourth-rank tensor having in general
81 terms. A reduced notation suggested by Nye [8] is often used to express
the fourth-rank tensor coefficients as given in Table 2.1.1. The dielectric
impermeability elements AB'lj evaluated by Eqn.(2.1.9) are defined along
the crystal principal axes. JThe last step of the procedure is to transform
these elements back to the loading axes system, which is given by the trans-
formation r8]

ABki a X alka jABlj (1=1,2,3; J=1,2,3) (2.1.10)

where i and J are summation indices and AB'ij are defined by Eqn.(2.1.9).
The impermeability elements ABkZ which are found from Eqn.(2.1.10) are used
in Eqns.(2.1.6) and (2.1.7) to obtain the major and the minor axes of the
intersection ellipse formed by the incident light with the indicatrix sur-
face. Once B1 and B2 are known, the corresponding refractive indices can
be found easily from nI = l/B 1 and n2 = 1/B 2 , where n1  and n2
are the refractive indices along the minor and the major axes of the index
ellipse, respectively. After the refractive indices are known, the intensity
calculation can be carried out as given below.

A light wave after passing through the polarizer and incident upon the
sample has the form A cos(wt-$+2rTx 3 /A) where A is the wavelength, w is the

angular frequency and * is an arbitrary phase angle. The component amplitude
along the direction of the minor axis of the index ellipse is given by
A cos(a-0). As shown in Fig.2.1.1, a and 0 are respectively the angles sub-
tended by the incident light polarization direction and the minor axis of the
index ellipse with respect to the axis x1. The angle 0 is given by [7]

S= 1 tan-' AB12 + AB2 21  (2.1.11)

Similarly, the component amplitude along the major axis direction of the in-
dex ellipse is given by A sin(a-0). The light intensity transmitted through
the analyzer will be polarized along the analyzer direction. The components
along the major and the minor axis directions are further resolved along the
polarization and the analyzer directions. Let the component amplitudes
A cos(a-P) and A sin(a-0) be denoted by A1 and A2 , respectively. Thus,
for a ray travelling along the minor axis, the component amplitudes along the
polarization and the analyzer directions are given by Alcos(a-0) and
A1 sin(a-P), respectively. Similarly, for the ray travelling along the
major axis, the component amplitudes along the polarization and the analyzer
directions are given by A2 sin(a-0) and - A2cos(a-P), respectively.

6
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The net light amplitude L coming out of the analyzer is, hence, written as

L = A sin(a-P)cos(a-o)cos(wt-0+21Td/Al)-A sin(a-O)cos(a-P)cos(wt-0+2wd/A 2 )

where AI - A/n1 and A2 = A/n2 are the wavelengths along the minor and the

major axes respectively. The above expression can be written as

L = (A/2)sin2(a-p)[cos(wt-$+2nd/IA) - cos(wt-0+2ird/A 2 )].

Squaring and taking the time average to get the net resultant intensity I
coming out of the analyzer, one finally obtains

I = L2 = (A2 12) sin22(a-0) sin2{[rd(1/A1-1/A 2 )}. (2.1.12)

In general, for each point on the wafer, the stresses and hence, the
angle 0 and the values for A1 and A2 will be different. Thus, the
resultant intensity image will show dark and bright regions resulting in a
fringe pattern. The computer program developed in this work uses the above
developed analytical approach to compute the intensity of the light
transmitted through a stressed sample. The size of the squares for the
stress calculation was selected carefully so that the intensity did not show
any abrupt discontinuity. For an idea about the sizes of the squares, it
will suffice to say that to simulate the images for a diametrically
compressed Si disc of 1.746 cm diameter, the total area was divided into
approximately 60,000 squares. Silicon and gallium arsenide, the two main
semiconductors of interest in this work belong to the cubic class of crystal
symmetry; silicon being a member of m3m group, and gallium arsenide being a

member of 43m group. All crystals having cubic symmetry have only three
independent, non-equal, and non-zero piezo-optic coefficients out of a
possible total of 81. In reduced notation, these three non-zero coefficients
are denoted by rll, 'T1 2 , and 74 4 [8]. Explicitly they can be expressed
as follows:

1) i11 = 22 = • 33 1

or explicitly as 1r 111 = if22 2 2 = ' 3 33 3 ; (2.1.13)

2) IT44 = - 55 = T6 6 '

or explicitly as T12 12  it 122 1  V 2121 F T2 112  I T2 3 2 3  V 23 3 2  t T 3 2 3 2

If 3 22 3  it 3 1 3 1 =V 3113 i •1313 = •1 3 3 1; (2.1.14)

and 3) I12 =0 2 3 "1 31 = "13  "32 = w21'

or explicitly as VT1 12 2 = 12 23 3 it3 3 1 1 i T1 133 1T3 3 2 2 W 2 2 11 " (2.1.15)



For silicon, the values used in Eqn.(2.1.9) in this program were taken
from Giardini [2] and are shown in Table 2.1.2. These values were measured
at a wavelength of 1.11 pln by Giardini [2] which is close to the wavelength
of 1.15 pm used in this work. For gallium arsenide, to the best of our
knowledge, the values for the plezo-optic coefficients are not available in
the open literature. However, the paper by Booyens and Basson [9] has
reported the elasto-optic coefficients and the stiffness values of gallium
arsenide at a wavelength of 1.15 pm. The procedure of obtaining the
piezo-optic coefficients from the elasto-optic coefficients and the stiffness
values is given in Appendix 6.3 and the calculated values are shown in
Table 2.1.3. In the computer program, quadruple precision arithmetic is used
throughout to maintain numerical accuracy.

2.2 Edge Dislocation

This section deals with the intensity distribution around a straight
edge dislocation viewed by infrared light. The sample is taken to be a
square with the slip plane perpendicular to the sample surface. It is
assumed that the slip plane makes an angle of 4P with one of the crystal
principal axes. In this section, as before, all primed notations refer to
the crystal axes system and all unprimed notations refer to the sample axes
system. The approach given here is quite general and is demonstrated here
for a specific situation. As a specific example, we take a (100) surface of
silicon crystal with the dislocation slip plane lying perpendicular to the
surface. In this example, we assume that the crystal x'-axis comes out of
the plane of the paper and the crystal y'-axis makes an angle of * with the
dislocation line which is also taken to be the sample x-axis as shown in
Fig.2.2.1. This assumption is made to simplify the computations for this
example.

The stresses associated with the dislocation are given by the following
formulae [10]:

a .b y(3x2+y2) (2.2.1)

a ub y(x2 -y2) (2.2.2)22 2 2 2
22 2(1-v) (x +y )

0233 Iv(o11+o22-)) w vb 2,2 (2.2.3)

T(1-V) (x +y)

aub- x(x 2 -y2) 9(2.2.4)12 22•2

02 2ir(I-v) (x2+y2) 224



Table 2.1.1

Conversion technique from tensor to reduced notation.

Tensor notation 11 22 33 23,32 31,13 12,21

Reduced notation 1 2 3 4 5 6

Table 2.1.2

The piezo-optic coefficients for Si used

in computation (after [2]).

Coefficient Value

(cm2 /dyne)

11 -9.0 x lo-14

11 22  6.0 x 10-14

if1 2 12  - 5.0 x I0-14

Table 2.1.3

The piezo-optic coefficients of GaAs as derived

from data of Booyens and Basson [9].

Coefficient Value

(cm 2/dyne)

t 1 1 1 1  - 9.115 x lo-14

1 1 12 2  - 5.269 x 10-14

It12 12  - 6.061 x 10-14
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Z, x

Fig.2.2.1 Sample with x-z plane as the dislocation slip plarre.
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and 013 = 023 =0 . (2.2.5)

Here, V is the shear modulus, b is the magnitude of the Burger's vector and V
is the Poisson's ratio. Also, 021 = 012, and 031 = 032 = 0, as there
cannot be any resultant torque in the system.

Next, the direction cosines aij between the crystal and the sample
axes systems are evaluated. These are needed to transform the stress
components to the crystal axes system. For the specific example chosen here,
they are given by

a11 = cos X = cos X(x' = cos 90 = 0,

a12 = cos x2 x= cos y*x = cos 90 = 0,

a1 3  cosx x! = cos z~x = cos 0=1,

a2 1  cos x1 xi=Cos x~y' = cos j,

a2 2  cos x2^ x' = cos y'y' = cos (90-),

a2 3 = cos x3 x = cos z~y = cos 90 =O,

a3 1  cos x1 xi= cos xz = cos (90+0),

a32 = cos x2 Ax3 cos y^z' = cos ',

a33 = cos x3^ xi - cos z'z' = cos 90 = 0. (2.2.6)

Once the direction cosines are evaluated, the stress components can be
transformed to the crystal axes system through the following transformation:

°kl = ,j aki aijo0j (i=1,2,3; J=1,2,3). (2.2.7)

Each of the o 4 term is summed over nine terms. However, 023 w 032 - 013 =

o31 = 0, as well as, a12 = 021. Taking these into account, Eqn.(2.2.7) r

simplifies to

o*ý a kla,,,,, + (akl a 2 + ak 2 al, )012 + a k2 0 ao22 + a oU 333. (2.2.8)



For the specific case under consideration here for which a11=a12.a23=a33=0,

and a13 - 1, Eqn. (2.2.8) can be given by

o' -o11 - 33'

012 =013 21 031�0�

022 -a a a 0 +a 2 022.

023 =032 -a a 1011 + 2132 + a22a31)o12 +a32a22o22,

and

0�3 -a a a 012 +a 2 o (2.2.9)

The changes in the dielectric impemeability tensor elements AB' can be cal-
ij

culated from the fomula

AB� = � 1Tijkto� (k=1,2,3; 9.=1,2,3). (2.2.10)

The cubic crystal syninetry results in only three ind:?endent values of the
piezo-optic coefficients �t i,� as given by Eqns.(2.1.13-2.1.15). Taking
this into account, the coefffcients in Eqn.(2.2.10) can be written as

= 1r1111o�1 + �1122O�2 +

AB� 2  = = AB� 1 = = 0,

AB� 2  = 1T2222022 + + 1T2233033,

= AB� 2 = +

and
ITo' iTO' iT 0'

33 3 333333 + 331111 + 3322 22 (2.2.11)

These dielectric impermeability tensor elements are defined along the crystal
axes. These are transformed back to the sample axes through the following
transformation

12



ABkt = a ikajtAB' i (i=1,2,3; J=1,2,3). (2.2.12)
i,j

Each of the ABkU term is summed over nine terms. Substituting
Eqns.(2.2.11) and (2.2.6) in the above equation yields

AB 1=M a21 2AB 2 + 2a 2 1a3 1ABi 3 + a 3 1 2AB 3,

AB12 = AB2 1 = a2 1a2 2 BA2 + a2 1a3 2ABi 3 + a3 1 a2 2 Bi 2 + a31 a3 2 AB• 3 ,

AB13 = AB3 1 = AB = AB3 2 = 0,

AB22 a a 22
2 ABi 2 + 2a 2 2 a32 ABi 3 + a322ABi3'

A
and

AB3 3 = a 2 ABI (2.2.13)

The dielectric impermeability matrix now needs to be diagonalized in
order to obtain the major and the minor axes of the cross-sectional ellipse
formed by the plane perpendicular to the incident light as it cuts the
indicatrix. The equation of a quadric surface which denotes the indicatrix
is given by

B BkXkXt = 1 (k=1,2,3; 1=1,2,3) (2.2.14)
k,9t

where, as before, Bk• = Bo + ABkt, and xI, x2 , and x3 form the rectilinear

coordinate system x, y, and z for the sample. Bo is the isotropic dielec-

tric impermeability, given by Bo = 1/n2 where no is the isotropic refractive

index.

As before, the problem can be simplified by taking the ray direction to

be parallel to axis -x 3 (i.e., along the sample -z axis). In that case,
intersection of the plane perpendicular to the ray direction is obtained by
setting x3 = 0 and Eqn.(2.2.14) simplifies to give the cross-section of the
indicatrix perpendicular to the ray direction as

0  AB1 1)x 1  AB2 2 )x 2
2  1x 1 B

Forming the matrix, diagonalizing it and solving the characteristic equation,
we find the two roots which are given by:

__z1+_B22 1 rB22- l/2 - -

B =B + A + AB1 A 2 + 4AB1AB 2 9 (2.2.16)
1 0 2 2 P 11 B22) 4B 12 B2 1

13



and
AB11+AB221 o

8 B 1 1  -AB )2 + 4AB AB (2.2.17)

where BI and B2 are the dielectric impermeabilities along the minor and
the major axes of the index ellipse, respectively. Once they are known, the
refractive indices along those two directions can be easily calculated from
nI = 1/1B1, and n2 - 1/1B2.

The image intensity distribution for an edge dislocation can be obtained
by following exactly the same procedure taken to calculate the intensity
distribution for a semiconductor disc under diametrical compression in
Section 2.1. The final expression for the intensity I will be the same as
Eqn.(2.1.12) and is rewritten below for convenience.

I = (A2/2) sin 2 2(a-0) sin 2{1rd(lA 1 - 1/A2 )] (2.2.18)

where A is the amplitude of the incident wave, a is the angle the polarizer
makes with respect to the sample x-axis, 0 is the angle given by

I

S+ ABt21 (2.2.19)

d is the sample thickness, A1  = A/n1 , A2  = A/n2 , and A is the
wavelength of the incident light in vacuum.

It is important to point out here that the approach taken here to obtain
the image intensity is quite general. One will r-ed to obtain the values for
appropriate coefficients ai in Eqn.(2.2.6) for other orientations of the
edge dislocation. The probrem is considerably more tedious if the incident
light is not taken to be along the sample z axis.

2.3 Screw Dislocation

In this section, an example of image simulation for screw dislocation is
presented. The analysis given in Hirth and Lothe [10] is followed closely.
Let us consider a right-handed screw dislocation along the axis of a cylinder
of radius R and length L, as shown in Fig.2.3.1. This dislocation can be
produced from a perfect cylinder by shear displacements in the z direction.

This dislocation has a Burger's vector b with the displacements given by
ul, u2, and u3 along directions x, y, and z, respectively. The latter
directions are also referred to as x1 , x2, and x3. The strains and
stresses are given by cij and oij, respectively, where both I and j take
the values 1, 2, and 3. As is evident from this figure, uI = u2 = 0, and
the displacement u3 discontinuous at the cut surface defined by y = 0,
x > 0 is given by

14 1



x2 , Y

X3

/

/ X

Fig.2.3.1 A right-handed screw dislocation along the axis
of a cylinder of radius R and length L.
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lim u3 (x,-Ay) - u3(x,Ay) = b (in z direction); Ay positive
Ay -# 0
X > 0.

Assuming that in an isotropic medium the displacement u3 increases
uniformly with the angle y to give the discontinuity represented in the
cylindrical coordinate system as

y b y b x2
u3 (r,y) = b = tan- 1 x , y tan- x" " (2.3.1)

Now the strains eij are defined by

Iu u+ (i=1,2,3; J=1,2,3), (2.3.2)•lj = 2 ax ax xI

which gives

£11 e 22 E 33 z E12 = E21 =0,

b taan-1 2 b 2'C23 E32 4 x2 -I 4 t -2 2 2

and

bE 3 tan-' x b 2 b_2 (2.3.3)
41r 8x 1  x1 4w x 1 + x2 2

The stresses and strains are related by the stiffness coefficients
Cijkl. Conventionally these stiffness coefficients are defined only along
the crystal principal axes. However, the strain elements Eij in
Eqn.(2.3.2) need not be along the crystal principal axes. The axes system
chosen to represent the strains due to the screw dislocation, i.e.
(xl,x2,x3) need not coincide with any of the principal crystal axes.
Subsequently in this section, all primed notations refer to the crystal axes
system and all unprimed notations refer to the sample axes system.

The approach can be quite general to take into account any orientation
of the slip plane with respect to the crystal principal axes. As a specific
example, let us assume the sample to be of (100) orientation, with the
crystal x'I axis coming out from the sample surface (i.e. along the sample

16
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axis x3), and the crystal x' 2 axis making an angle of * with the
dislocation slip plane (i.e. sample x1x3 plane) as shown in Fig.2.3.1.
For this case, the direction cosines a1i between the crystal axes and the
sample axes can be obtained from Eqns.(Z.2.6). Once the direction cosines
are evaluated, the strains can be converted from the sample axes to the
crystal axes by the following transformation

6 = i a jij (i=1,2,3; 1=1,2,3), (2.3.4)

where £'kt give the strain values in the crystal axes system. Each of the
64 term is summed over nine terms. However, l= £22 = £33 = £12 = £21 = 0,

as well as e23 = £32, and £31 = £13. Taking these into account, Eqn.(2.3.4)

can be rewritten as

• = oa(akla + ak 3a, )'31+ (ak2 ak 3Ua 2 )£23. (2.3.5)

For the specific case under consideration for which the direction cosines are
given by Eqns.(2.2.6), we have a 11=a 12=a-a23a = 0, and a1 3=1, and thus
Eqn.(2.3.5) can be given by 13

611 = ci2 6i£3 = 6k2 = £c3 z 0,

612 cl2 a 21631 + a226231

and

13 31 a31631 + a32'23- (2.3.6)

Now the stress components o'lj along the crystal principal axes can be
evaluated by the following equation

oaj =k,' Cjk9k (k=1,2,3; t=1,2,3), (2.3.7)

where 'kt are defined by Eqn.(2.3.6). The stiffness coefficients cidkt
used in Eqn.(2.3.7) can be expressed In reduced notation as done earlier for
lTijkl In Eqns.(2.1.13-2.1.15) as

cijkt = Cmn (i,j,k,t=1,2,3; m,n=1,2,...,6). (2.3.8)

As before for materials with cubic 43m or m3m symmetry, the following equal-
ities are valid:

17



C11 = c2 2 u c33'

i.e., c1 11 1 U c2 2 2 2 0 c3 3 3 3 ;

c1 2 = c2 1 = c13 z c3 1  c 2 3 u C32 '

i.e., c 11 22 = c2 2 11 = c1 13 3 = c3 3 1 1  c 2 2 33 = c3 3 2 2 ;

c44 c55 c6 6 ,

i.e., c2 3 3 2 - c2323 = c32 2 3 = C3 2 32  c C3 11 3 = C3 13 1

= c1331 = c1313 z c1212 = c2121 - 1221 = 2112;

and

c14  c 15  C 16 = 24 = 25 = c26 = 3 4  C 3 5 = c3 6 c 4 1 = 42 = 43

= C4 5  C 4 6  C 5 1  c 52 = 53 = c54 z C56 z c61 0 c62 = 63 =c 6 4 =c 6 5 =O;

as there are only three non-equal stiffness constants namely, cill c12, and

c44 . Substituting the above in Eqn.(2.3.7) yields

ol= ai = 023 = 032 = 033 = 01

012 = o21 a (c 12 12 + c1 22 1 )ej 2 = 2c 4 4 612,

and

'i3 m o31 = (c1313 + Cl331)c1 = 2C4 4 c31 (2.3.9)

However, c4 4 is the shear modulus V. Therefore,

012 - oi1 = 21, i,

and similarly,

oi z0h = 2)zeil.

Once the stress components o'tj are known, the changes in the dielectric
impermeability can be evaluated as done earlier from

ABý = ! •k~ij~ij (i=1,2,3; j=1,2,3), (2.3.10)
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where •ktlj are the piezo-optic coefficients given earlier in
Eqns.(2.1.13-2.1.15). Substitution yields,

ABi1 = ABi 2 z "B'3 z AB 2 a "'h - 0,

AB1 2 - AB'z = 2*1212012,

and

ABj1 = A13 = 2,1313o31 (2.3.11)

These changes in the dielectric impermeability are defined along the
crystal principal axes. Now they need to be transferred to the sample axes
system through the following transformation

AB1 J = J akiaRj AB 4 (k=1,2,3; t=1,2,3). (2.3.12)
k,9.

Substitution of the values for AB'kt from Eqn.(2.3.11) and aij from
Eqn.(2.2.6) into Eqn.(2.3.12) yields

AB11 = AB12 = AB21 = AB22 = AB3 3 = 0,

AB13 = AB3 1 = a2 1ABN2 + a31AahI

and

AB2 3 = AB3 2 = a2 2 AB 2 + a3 2AB' 1 . (2.3.13)

The indicatrix is given by

J B ,jx x~ = 1 (i=1,2,3; j=1,2,3). (2.3.14)

Expanding as before and remembering that there are no cross-terms under
unstressed condition, one obtains

(B0 + AB1 1 )x 1
2 + (B0 + AB2 2 )x 2

2 + (Bo + AB33x2

+ 2AB12 xIx 2 + 2AB2 3 x2 x3 + 2AB3 1x3x1 - 1,

or,

B0x12+ B0x 22 + B0x 32 + 2A 3x2x3+ 2 1x3x1= 1. (2.3.15)

If the light is incident along the -x3 direction, then the cross-section
found by putting x3 = 0 In the above equation gives

80x1
2 + BOx22 = 1, (2.3.16)
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and there is no birefringence as the cross-section is a circle. Therefore,
an important observation is that screw dislocations cannot be viewed
end-on, i.e., along the direction of the Burger's vector. However, if the
light traverses along other directions, one should be able to see
interference fringe patterns due to birefringence. Assuming the light to be
falling along the -xt direction, the cross-section found by putting
x1 = 0 in Eqn.(2.3.15) gives

B0 X22 0+ BoX3 + 2+B2 3 x2 x3 = 1. (2.3.17)

This cross-section is an ellipse and one should see birefringence correspond-
ing to the relative dielectric impermeabilities along the minor and the major
axes given by

B1 = B0 + AB 23, and B2 = B0 - AB23

where AB2 3 is given by Eqn.(2.3.13), with corresponding refractive indices
along its minor axis being n1 = 1/NB1 and along its major axis being

n= 2 1/B 2. The angle 0 subtended by the minor index axis with axis x3 is

given by

0=½ tan- 1  W.23  (2.3.18)2 AB33 -AB 22

However, AB2 2 = AB33 = 0 and Eqn.(2.3.18) gives the value of 0 as

-1ta -1  ii.ý = tan-1=4

As before, the resultant transmitted intensity through the analyzer is given
by

I = (A2 12) sin2 2(a-P) sin 2 [fid(l/A 1 - 1/A 2 )) (2.3.19)

where Al = A/n1 , A2 = A/n2 and A is the incident light wavelength in
vacuum. Here, a is the polarization angle of the incident light measured
with respect to the axis x3, and d is the material thickness along x1
direction.
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3. RESULTS AND DISCUSSIONS

3.1 Experimental Set-Up

A dark field plane polariscope was constructed to view the fringe
patterns of diametrically loaded discs of silicon and gallium arsenide. The
setup is shown in Fig.3.1.1. Figure 3.1.1(a) shows a general view of the
set-up while Fig.3.1.1(b) shows the schematic arrangement. The light source
used was a linearly polarized 19-mW He-Ne laser (Jodon HN-50) tuned to 1.15
pIm wavelength. Both silicon and gallium arsenide with absorption cut-off
wavelengths of 1.11 pim and 0.89 pim, respectively, are transparent at 1.15 Pm
wavelength. A Hamamatsu infrared camera (model C-1000-03) was used as a
detector. The power output of the laser was strong enough for the detector
to pick up bright images. The laser beam was spatially filtered and then
expanded to a diameter of 2.5 cm by a combination spatial filter - beam
expander arrangement.

A laser light source was selected over the more conventional filtered
incoherent light sources because of its monochromaticity. The use of the
laser as the source of illumination proved to reduce the washing out effect
observed in images formed with wider bandwidth sources. A comparison of
Figs.3.2.1(a) and 3.2.2(a) with Fig.3.2.3(a), which is reproduced here from
the reported work of Appel et.al. [11], clearly shows improved constrast in
the first two cases using a laser light source. An unfortunate artifact of
the use of the laser is the production of speckle in the images. This can be
seen in Figs.3.2.1(a) and 3.2.2(a) as an overall graininess in the images.

In theory at least the use of the polarized laser beam would have
precluded the need for using a polarizer ahead of the sample. However, even
in the beam expanded state, the laser source proved to be too powerful and
blinded the infrared sensitive camera. Because of the need to rotate the
plane of polarization of the light source, and also the need to reduce the
light intensity, a polarizer was inserted into the optical path ahead of the
sample.

Figures 3.2.1(a) and 3.2.2(a) were photographed directly from the screen
of the monitor with a 35-mm camera. The samples were placed between the
polarizer and the analyzer and loaded by a pneumatically operated piston.
The anvils of the compressor were made of flame-hardened mild steel and
pieces of index card were used to protect the edges of the samples during
compression. The cross-section of the piston plunger was I sq. in. ± M%. A
pressure gauge calibrated in psig then allowed the compressive force on the
sample disc to be read directly.

3.2 Results for Diametrically Compressed Semiconductor Discs

The silicon samples used in this experiment were cut along the (111)
orientation from a rod of single crystal silicon of 1.746 cm diameter. To
prevent loss of intensity due to surface scattering, the sample surfaces were
polished to a mirror finish. The polishing was done manually on both sides
of the samples with SiC powder on a glass plate with light hand pressure,
using a successively finer abrasive medium starting with 200-grit powder size
and ending with 1200 grit powder size. After the mechanical polishing was
completed, the samples were chemically polished for 2 min in CP-4A solution
containing three parts HF, five parts HNO 3 , and three parts CH3 COOH by
volume.
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Fig.3.1.1(a) The general view of the experimental set-up.

SAMPLE COLLIMATOR/
BEAM

EXPANDER

P
MONITOR CAMERA ANALYZER POLARIZER He-Ne LASER

(I. 15 jiM)

Fig.3.1.1(b) The schematic arrangement of the experimental set-up.
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Figure 3.2.1(a) shows the observed image at 1.15 pm under the plane
polariscope for a (111) orientation silicon crystal disc cf 0.873 cm radius
and 0.16 cm thickness. The applied load was 19 kg and the angle of
polarization a of the incident light was 90. Figure 3.2.1(b) is the
simulated image for these same conditions obtained from the analysis given in
Section 2.1. The intensity levels shown in Fig.3.2.1(b) were obtained by
normalizing the maximum level to unity and then plotting in sixteen gray
scale levels utilizing a logarithmic scale. Any intensity more than 0.1 in
the normalized scale is plotted as white in the computed figure. Figure 3.2.2
compares the observed and the simulated images for the same conditions as
Fig.3.2.1 but with the load now increased to 38 kg. A close observation of
the simulated image of Fig.3.2.2 will bring out the feature of the small
lobes around the point of loading which is also present in the experimentally
observed image. Thus the match between the computer simulations and the
experimentally observed images is excellent.

The data reported by Appel et.al. [11] of a silicon sample with radius
R = 0.437 cm, thickness d = 0.188 cm, and the polarization angle a = 600 are
shown in Fig.3.2.3(a). The crystal orientation of the sample was not
mentioned in their paper. In this work, we simulated their image by assuming
the sample orientation to be (100) and (111). The results of our simulation
are shown in Figs.3.2.3(b) and 3.2.3(c), respectively, for (100) and (111)
oriented silicon samples. All other parameters used in our simulation were
the same as those reported by Appel et.al. [11]. Comparing Fig.3.2.3(a) with
Figs.3.2.3(b) and 3.2.3(c), an excellent match is seen between the simulated
image and the experimentally observed image for a (100) orientation sample,
whereas the simulated image for a (111) orientation sample shows a poor match
with theexperimental one. The best match for the (100) orientation
simulation was obtained for the case in which the load was applied along one
of the crystal principal axes. Hence, we infer that the sample used in the
work reported by Appel et.al. [11] was of (100) orientation.

Hence, the algorithm can not only be used to predict the interference
fringe pattern for any arbitrarily applied stress direction, but can also be
used to predict the orientation of an unknown sample by putting it under a
compressive load and then by comparing the resulting fringe pattern with the
simulated ones.

The algorithm was also used to determine the fringe patterns for a
diametrically loaded GaAs disc. The disc was single crystal undoped
semi-insulating GaAs of (100) orientaton, grown by the Liquid Encapsulated
Czochralski (LEC) technique. It was of diameter 0.75 inch and thickness
65 mils. Both its surfaces were polished to a mirror finish.
Figure 3.2.4(a) shows the simulated pattern for the above disc under a
diametrical compression load of 20 kg, and the angle of polarization a of the
incident light of 0°. Figure 3.2.4(b) shows the experimentally obtained
image for the disc subjected to same conditions as in Fig.3.2.4(a). Figures
3.2.5(a) and 3.2.5(b) show the simulated pattern and the experimentally
obtained image of the same disc but with the load now increased to 40 kg and
the angle of polarization a of the incident light changed to 45. The match
between the simulated patterns and the experimentally obtained images
confirms the general nature of the algorithm which can effectively be used
for a variety of materials.
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(b)

Fig. 3.2.1. a) Experimentally observed image on a (111) silicon disc of

radius 0.873 cm and thickness 0.16 cm. Diametrical compression
load P = 19 kg, angle of' polarization a = 9O0. b) Simulated
image for the same conditions as a). Normalized intensity is
plotted on a logarithmic scale for the computed image.
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(a)
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(b)

Fig. 3.2.2. a) Experimentally observed and b) computed images on a (111)
silicon disc of radius 0.873 cm, thickness 0.16 cm for a load of
38 kg and the angle of polarization a of 90°. Normalized
intensity is plotted on a logarithmic scale for the computed
image.
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(a)

(b) (c)

Fig. 3.2.3. a) Experimentally observed image reported by Appel et.al. [111 A

for a silicon sample of unknown orientation with a radius of
0.437 cm, thickness of 0.188 cm, load of 38 kg and the angle of
polarization a of the incident light of 600, b) simulated image
for the same conditions as a) for (100) orientation, and c) same
as b) but for (111) oriintation. Normalized intensity is
plotted on a logarithmic scale for the computed images.
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Fig. 3.2.5. a) Simulated image on a (100) gallium arsenide disc of radius
0.375 inch and thickness 65 mils. Diametrical compression load
P = 40 kg, angle of polarization a = 450. b) Experimentally
obtained image for the same conditions as a). Normalized
intensity is plotted on a logarithmic scale for the simulated
Image.
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3.3 Stress-Optic Coefficient

Isotropic materials with spherical indicatries become anisotropic when
stressed either by some external means such as application of a load or by
internal means such as defects within the material. The stress field causes
optical anisotropy and as a result the material becomes birefringent with the
indicatrix represented by an ellipsoid. Thus, if the sample is illuminated
with a monochromatic radiation of wavelength longer than the absorption
cut-off of the material, upon entering the stressed sample, the light will
split into two components along the major and the minor axes of the
cross-sectional ellipse of the indicatrix with different indices of
refraction. These two components will build up a phase difference € between
them as they traverse the sample. This phase difference is given by

C(al-O2 )21idC(0-= 2• ,(3.3.1)

where C is the stress-optic coefficient of the material, 01, and 02 are
the diagonalized elements of the stress matrix given by

a1= 0112 + 1 l - 0 2+ 40 22]
1 /2 , (3.3.2)

and
01+0 1 •1-/2

02= 11 +22 2 1 2 402] , (3.3.3)2 2 - (l - 022) +

where oal, 022, and 012 are given by Eqns.(2.1.1-2.1.3) respectively, d
is the material thickness, and A is the wavelength of the incident light.
This approach assumes a constant value of the stress-optic coefficient.
However, the stress-optic coefficient can be taken as a constant only for
isotropic materials. In an anisotropic medium, which is the case for a
diametrically compressed semiconductor sample, the value of the stress-optic
coefficient C will depend on the orientation of the load with respect to the
principal crystal axes. The values of C will also vary, in general, from one
point of the sample surface to the next for a given load. However, the
values of C do not depend on the magnitude of the applied load, provided that
a linear relationship between the pressure and the phase retardation holds.
Giardinli 2] has reported that this linearity holds upto a pressure of
450 kg/cm' for silicon.

In this work, a different approach is taken to examine the behavior of
the stress-optic coefficient C for the case of diametrically compressed discs
of semiconductors (silicon and gallium arsenide). The incident light while
passing through the stressed sample splits into two components with different
indices of refraction, and thus travels with different velocities. The.V
velocity of light within a material with index of refraction n is given by
c/n, where c is the velocity of light in free space. Now it is assumed that
the light travelling along the minor axis of the ellipse has a velocity v1 ,
and that travelling along the major axis has a velocity v2, with
corresponding wavelengths A1 and A2 , and the indices of refraction n1
and n2. The phase angle of the minor axis component is given by

29

4.



$1 21rd/A 1 , and that of the major axis component is given by
02 = 2nd/A 2 . The phase angle difference 0 between these two components
is given by

or,€€~~~~ =02- 01 = 2ird (•- ')'21d(--nf- -)'fi

21 1
or,

or,
* 2nd (34-i-- (n-n) (3.3.4)

where A is the wavelength of the incident light in free space and f is its

frequency.

Comparison of Eqns.(3.3.1) and (3.3.4) gives

n2 - n 1
C - O(3.35)

a1 a2

Equation (3.3.5) was used to compute the value of C at each point on the
wafer for a semiconductor disc under diametrical compression. For both Si
and GaAs (100) samples, the value of C was found to vary along the sample
surfaces. The value of C was also found to depend on the orientation of the
load with respect to the principal crystal axes. However, for both Si and
GaAs (111) samples, C was found to be independent of the loading orientation
or the position on the sample surfaces as expected from the crystal symmetry.

The values of C calculated from the simulation as a function of position
on the sample surface for a (100) oriented silicon disc are shown in
Fig.3.3.1. Figure 3.3.2 shows the same for a (100) oriented gallium arsenide
disc. In both of these figures, the orientation of the load with respect to
the principal crystal axes lying on the wafer surface is defined by the angle
6. Figure 3.3.1(a) shows the values of the stress-optic coefficient C as a
function of position on a (100) Si surface for 6 = 45, while Fig.3.3.1(b)
shows the same for 6 = 75. Similarly, Figs.3.3.2(a) and 3.3.2(b) show the
values of C for a (100) GaAs sample for the angles 8 = 45", and & = 75,
respectively.

From Figs.3.3.1 and 3.3.2 it can be seen clearly that, as expected, C
cannot be taken as a constant for a given load as it is a function of
position on the sample surface. As the angle of loading is changed, the
pattern of C on the wafer changes. Therefore, it is a function of the
orientation of the loading axes with respect to the principal crystal
directions. For (100) oriented silicon the values of C ranged from
2.0 x 10-12 cm2 /dyne to 3.0 x 10-12 cm2 /dyne and is plotted in
Fig.3.3.1 in a gray scale with 11 levels In the plot, a white scale was
employed for C > •.95 x 10-12 cm2/dyne and a black scale for
C < 2.05 x 10-12 cmJ/dyne. Intermediate values were plotted in nine
levels varying in the shade of gray, with linear spacings. For (1001
orj ented gallium arsenide, the values of C ranged from 0.8 x 10-1
cm /dyne to 2.6 x 10-12 cm /dyne and are plotted in Fig.3.3.2 in a gray
scale with 10 levels. In the plot, a white scale was employed for
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(a) (b)

Fig. 3.3.1 Wafer map of the computed values of the stress-optic coefficient
C for a) 6 = 45" and b) 6 = 750 for a load of 19 kg, (100)
silicon wafer with radius of 0.873 cm and thickness of 0.16 cm.
Plotted in 11 levels of gray scale with white for
C > 2.95 x 10-12 cm2/dyne and black for C < 2.05 x 1012
cm2 /dyne.
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(a) (b)

Fig. 3.3.2 Wafer map of the computed values of the stress-optic coefficient
C for a) 6 = 45° and b) 6 = 75° for a load of 20 kg, (100)
gallium arsenide wafer with radius of 0.375 inch and thickness of
65 mils. Plotted in 10 levels of gray scale with white for
C > 2.5 x 10-12 cm2 /dyne and black for C < 0.9 x 10-12
cm2 /dyne.
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C > 2.5 x 10-12 cm2 /dyne and a black scale for C < 0.9 x 10-12 Cm2 /dyne. In-
termediate values were plotted in eight levels varying in the shade of gray,
with linear spacings.

One important point to note is that though C varies as a function of
position for any given load, yet for a given value of 6, the wafer map of C
is independent of the magnitude of the applied load. For instance,
Fig.3.3.1 is plotted for a load of 19 kg and Fig.3.3.2 is plotted for a load
of 20 kg. However, doubling the load to 38 and 40 kg respectively will not
cause these two patterns to change. This is expected from the linearity
between the stress and the phase retardation.

However, for (111) oriented Silicon or Gallium Arsenide, the value of C
is independent of position for any given load, and is also independent of the
orientation of the loading axes with respect to the principal crystal axes.
The value we report for (111) silicon disc under diametrical compression is
2.33 x 10-12 cm2 /dyne and the same for Gallium Arsenide disc under
diametrical compression is 1.94 x 10-12 cm2 /dyne.

The value of C quoted by Appel et.al. [11] for silicon is
2.1 x 10-12 cm2 /dyne. Bullough L12] reported it as variable from
1.0 x 10-12 cm2 /dyne to 2.3 x 1 0-1 cm2 /dyne based on his studies of
edge dislocations in silicon. Prussin and Stevenson [13] deduced a value of
2.0 x 10-12 cm2 /dyne in their experiment on silicon bars subjected to
pure bending. Their reported value compares favorably to those quoted by
Bullough and by Appel et.al. Both the works by Appel et.al. and by Prussin
and Stevenson measured the retardation as a function of the applied stress.
From the observed linear relation between them, a mean value of the
stress-optic coefficient C was found to fit the data, whereas Bullough
adjusted the value of C to make his theoretical simulation of edge
dislocations in silicon match with those experimentally determined by Bond
and Andrus [14].

To summarize, we can say that for (100) oriented Silicon or Gallium
Arsenide disc under diametrical compression, no unique value of C can be
given as it varies from point to point for any given load, and varies with
the orientation of the load with respect to the principal crystal axes as
well. However, no such dependence was found for (111) oriented samples. For
silicon, the values of C calculated in this work are consistent with those
reported earlier. However for gallium arsenide to our knowledge, no data of
C is reported so far. The value of C for a given position on the wafer will
not change on increasing the load so long as the tensor elements lTijk% of
the piezo-optic coefficient matrix remain constant.

3.4 Simulation Results for Edge and Screw Dislocations

The simulation results for edge and screw dislocations are presented in
this Subsection. Figure 3.4.1 shows the simulation results for an edge
dislocation on a (100) Si surface with the dislocation slip plane lying on
one of the principal crystal plane and the Burgers vector along one of the
principal crystal direction (i.e., the angle * in Fig.2.2.1 is zero). The
polarization angle of the incident light with respect to the dislocation slip
plane is denoted by a. The images in Fig.3.4.1 are obtained for the light
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,(a) (b)

Fig. 3.4.1 Simulated fringe patterns for an edge dislocation on a (100) Si
surface with the dislocation slip plane along one of the
principal crystal plane and the Burger's vector along one of the
"principal crystal direction. a is the angle between the

dislocation slip plane and the polarization axis of the incident
light, a) a 0 0, b) a =300, c) a =45% d) a = 60%
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incident along one of the principal crystal direction. Figures 3.4.1(a),
(b), (c), and (d) show the simulation results for a = 0, 30, 450, and 600,
respectively. From the figures, it can clearly be seen that when the
polarizer mf=n-' an angle of 450 with respect to the disiocation slip plane,
the image is brightest with a four-petal rosette pattern with equal lobes.
This is of interest as it is a key feature which distinguishes edge
dislocations from screw dislocations lying along principal crystal planes, as
will be evident from the following paragraphs.

Figure 3.4.2 shows the simulation results for a screw dislocation on a
(100) Si surface with the dislocation slip plane lying along one of the
principal crystal plane and the Burgers vector along one of the principal
crystal direction. Here also the polarization angle of the incident light
with respect to the dislocation slip plane is denoted by a. If the light is
incident along the direction of the Burgers vector, the cross-section is a
circle and there is no birefringence as is evident from Eqn.(2.3.16).
Therefore, for the particular case under consideration, this dislocation
cannot be viewed end-on, i.e., along the direction of the Burgers vector.
Figures 3.4.2(a), (b), (c), and (d) show the simulation results for a screw
dislocation when the light is incident perpendicular to the direction of the
Burgers vector and along one of the principal crystal direction for a = 00,
250, 5f', and 750, respectively. From the intensity distribution equation
(2.3.19) for a screw dislocation, we can see that for a = 45, there is a
total extinction as the transmitted intensity is zero. However, for edge
dislocations for a = 45", the intensity distribution is brightest with a
four-petal rosette pattern with equal lobes.

Therefore, for these two specific cases under investigation, it is easy
to find out the types of the dislocations, their locations, and their
orientations by continuously varying the polarization angle and monitoring
the fringe patterns closely. The orientation of a screw dislocation is 450
from the axis of polarization for total extinction. For any other angles of
polarization, the images of edge and screw dislocations are completely
different as evident upon comparing Figs.3.4.1 and 3.4.2. However, these
figures are obtained under rather restrictive assumptions of the orientations
of the dislocations and the incident light directions.

This simulation approach can be made quite general though it would be
rather tedious to work out for any arbitrary orientation of the dislocation
slip plane with respect to any of the principal crystal planes, and any
arbitrary direction of the Burgers vector with respect to the dislocation
slip plane. The approach would include determining the direction cosines
between the dislocation slip plane and the principal crystal directions.
Then any arbitrary orientation of the Burgers vector with respect to the
dislocation slip plane can be taken care of by resolving it along the
dislocation slip plane and perpendicular to it which would then give the edge
and the screw components. Then the stress components form each of these two
types of defects need to be added keeping in perspective the directions of
the principal stress components and the shear stress components. Then these
added stress components need to be transformed to the principal crystal
directions from the known values of the direction cosines between the
principal crystal directions and the dislocation slip plane. After that, the
changes in the dielectric impermeability can be obtained from the known
values of the piezo-optic coefficients.
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(a) (b)
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Fig.3.4.2 Simulated fringe patterns for a screw dislocation on a (100) Si
surface with the dislocation slip plane along one of the
principal crystal plane and the Burger's vector along one of the
principal crystal direction. a is the angle between the
dislocation slip plane and the polarization axis of the incident
light a) a = 0°, b) a = 25, c) a = 50", d) a = 75.
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Then we need to fix the direction of the incident light with respect to
these principal crystal directions and obtain the direction cosines between
them. After that the changes in the dielectric impermeability obtained in
the principal crystal axes need to be transformed to the coordinate system
determined by the light direction from the known values of the direction cos-
Ines. The diagonalizatlon of the dielectric impermeability matrix then
follows to obtain the refractive indices along the major and the minor axes
directions and then the procedure of obtaining the intensity of the light
transmitted through the analyzer is the same as outlined in either of the
Sections 2.2, or 2.3.

Thus, the generalization of the problem is straightforward in concept
but the algebra involved is sufficiently complicated. Currently work is
being done to make this algorithm more general in approach. A variety of
these images for varying directions of the Burgers vector with respect to the
dislocation slip plane and varying orientations of the dislocation slip plane
with respect to the principal crystal planes for varying directions of the
incident light and varying angles of polarization can be generated and stored
on the computer. Then a sample with any arbitrary direction of the Burgers
vector and any arbitrary orientation of the dislocation slip plane can be
placed under the polariscope and the experimental image obtained for
different directions of the incident light and different angles of
polarization. Then an image matching procedure is needed between the
simulated images and the experimentally observed ones to determine the exact
direction of the Burgers vector and the exact orientation of the dislocation
slip plane.
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4. SUMMARY AND CONCLUSIONS

A fast, accurate, and efficient technique which can characterize large
defects in each semiconductor substrate prior to device fabrication in a
reasonable time w4.1 improve the yield of the electronic devices fabricated
on it. In this work, the technique of infrared piezo-birefringence is
investigated to characterize large defects in semiconductor materials. A
dark field plane polariscope using 1.15 pm wavelength He-Ne infrared laser as
the light source was constructed for this purpose.

As a first step towards defect characterization, the cases of diametri-
cally loaded discs of semiconductor samples were taken. An algorithm was
developed to be used in the computer for the simulation of the stress
patterns and the resulting fringe patterns for infrared transparent semicon-
ductor discs under diametrical compression placed in a dark field plane
polariscope between crossed polarizer and analyzer. This was done to obtain
a better understanding of the simulation algorithm and subsequently for its
use for defect characterization. The simulation results matched remarkably
well with the experimentally obtained images for diametrically compressed
discs of Si and GaAs.

The behavior of the stress-optic coefficient C was also investigated in
this work, which had been taken as a constant in earlier works by other
investigators. Our investigation showed that for (100) oriented Si and GaAs
discs under diametrical compression, the value of C changed from one point to
the next on the sample surface for a given load. The value of C was also
found to depend on the orientation of the applied load with respect to the
principal crystal axis. However, the value of C on any positli- on the wafer
did not change upon increasing the magnitude of the load. This is expected
from the linearity between the stress and the phase retardation. The values
of C for both Si and GaAs discs of (111) orientation were found to be inde-
pendent of position for any given load, as well as were independent of the
orientation of the load with respect to the principal crystal axis, as
expected from the crystal symmetry. The values we report for (100) Si disc

subjected to diametrical compression ranged from 2.0 x 10-12 cm2 /dyne to

3.0 x 10- 12 cm2 /dyne, and for (100) GaAs disc subjected to diametrical

compression ranged from 0.8 x 10-12 cm2 /dyne to 2.6 x 10-12 cm2 /dyne. For
(111) oriented Si and GaAs discs under diametrical compression, the values

are 2.33 x 10-12 cm 2/dyne and 1.94 x 10-12 cm2u/dyne, respectively.

Next the algorithm was used to determine the fringe patterns for edge
and screw dislocations. For simplification purposes, image simulations were
carried out for edge and screw dislocations when the dislocation line, the
Burgers vector and the direction of the incident light were along the crystal
principal axes. For this special case when the Incident light was
perpendicular to the Burgers vector, the image patterns for an edge and a
screw dislocation were obtained and they showed a distinguishing difference
between them. For the polarization angle of the light of 45" with respect to
the dislocation slip plane, the image of a screw dislocation was found to
disappear, whereas for an edge dislocation for the same polarization angle,
the image pattern was the brightest with a four-petal rosette pattern with
equal lobes. This feature was striking as it gave a distinguishing factor
for detecting a screw dislocation from an edge dislocation by continuously
varying the polarization angle and monitoring the fringe patterns.
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Though specific cases were investigated here for the edge and the screw
dislocations, the approach can be made quite general to take into account any
arbitrary direction of the Burgers vector, the dislocation slip plane, the
direction of the incident light, and the polarization angle of the incident
light. The concept is rather straightforward but the algebra involved is
sufficiently complicated and tedious. The general appraoch is given below.

First, the direction cosines between the dislocation slip plane and the
principal crystal directions are obtained. Then any arbitrary direction of
the Burgers vector with respect to the dislocation slip plane is taken into
account by resolving it along the dislocation line and perpendicular to it,
which are the screw and the edge components. Then the stress components for
these two cases are added keeping in mind the actual directions of the
principal stress components and the shear stress components. After that the
added stress components are transformed to the crystal principal directions
from the known values of the direction cosines between the principal crystal
directions and the dislocation slip plane. S

Then the changes in the dielectric impermeability along the principal
crystal directions are obtained from the known values of the piezo-optic
coefficients and the stress components. Then the direction of the incident
light needs to be fixed with respect to the principal crystal directions and
obtain the direction cosines between them. After that, the changes in the S
dielectric impermeability is transformed to the coordinate system defined by
the light direction from the known values of the direction cosines. Then the
diagonalization of the dielectric impermeability matrix follows to obtain the
refractive indices along the major and the minor axes directions. After
that, the usual procedure of obtaining the intensity of the transmitted light
through the analyzer as outlined in Sections 2.2, or 2.3, can be utilized.

Currently work is being done to generate the images of edge and screw
dislocations for varying directions of the Burgers vector, the dislocation
slip plane, the incident light direction, and the polarization angle of the
incident light. The simulation results can then be stored in a computer.
Then a sample with any arbitrary direction of the Burgers vector and any
arbitrary orientation of the dislocation slip plane can be placed under the
polariscope and the experimental images obtained for varying directions and
angles of polarization of the incident light. Then an image matching
procedure can be utilized between the simulated images and the experimentally
observed ones to determine the exact direction of the Burgers vector and the
exact orientation of the dislocation slip plane.
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6. APPENDICES

6.1 Direction Cosines for a (100) Plane under Arbitrary Loading

Figure 6.1.1 shows the axes system chosen. The loading axes system is A
(xlx 2 ,x 3 ) and the crystal principal axes system is (x1,xj,x!). Axis x3 in

the loading axes system and axis x'I in the crystal principal axes system
come out of the plane of the paper. The crystal principal axis x'2 makes
an angle a with axis xI of the loading axes system. The load P is applied
along axis x2 . The coordinates being so defined, the direction cosines can
now be obtained. These are given by

a = cos xl^x = cos 90 =0,

12 1 1a12 = cos x'^x =-cos 90 =O, •

a1 3 = cos xI x3 =cos 0 = 1,

a1 cos x2x xI cos a,

a 2 cs~ 2 cos (90-a),a22 = Cs ^x2 -=

a23 = cossx^x3 = cos 90 = 0,

a3 2 = cos x3 x2 = cos a,

a3 3 = cos x3 x3 = cos 90 = O. (6.1.1)

6.2 Direction Cosines for a (111) Plane under Arbitrary Loading

The case for (111) plane is more involved. Here, (xl,x2,x3)
coordinate system refers to the loading axes system with x2 being the axis
of loading. Axis x1 lies on the sample surface while axis x3 is normal
to the plane of the paper as shown in Fig.6.2.1. Also, (x Ix•,x•) refers to
the crystal principal axes coordinate system as shown in Fig.6.2.2. The
origin of both these coordinate systems is taken to be the substrate center
0.

Let (xl,x2,x 3 ) be the point on the wafer periphery where the load
is applied. This arbitrary loading direction can be specified by an angle y
measured in the clockwise direction from axis x"2 as shown in
Fig.6.2.3(a). The latter is the projection of crystal principal axis x'1
on the wafer plane as indicated in Fig.6.2.3(b). Axes x3 and x" 3 are the
same axis normal to the plane of the paper. Axis x"1 is in the plane of
the wafer and is perpendicular to both x"2 and x"3. We need to determine
the direction cosines aij that relate a point (xl,x2,x3) in the
loading
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Fig.6.1.1 The loading and the crystal principal axes

systems for a (100) plane.
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"-Wa fer 0
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Fig.6.2.1 The loading axes coordinate system.

X3

F Plane of
Wafer

X2

Fig.6.2.2 The crystal axes system and its orientation with
respect to the plane of the wafer.
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(a) Top view

X3,

X II

\ • cos-1

(b) Side view

Xa"X 3

Fig.6.2.3 The (x'1 x , x.3) coordinate system and its relationship

to the loading axes system and the crystal principal
axes system.
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axes system to a point (xj,xj,xj) in the crystal axes system. The transfor-

mation equation is given as

xj = • aijxj (j=1,2,3). (6.2.1)

This linear transformation is carried out in two steps as given below

x11 = Z a ~jxj (J=1,2,3),

and x• = a 1kX (k-1,2,3),

or x a I a" (7 agjxj). (6.2.2)
k

Comparing Eqns.(6.2.1) and (6.2.2) gives

and a j = I allkakj (k=1,2,3). (6.2.3)

From Fig.6.2.3, one obtains by direct observation that

al = cos(xr"x1 ) = cos Y,

ai2 = cos(xrl"x 2 ) = cos(90°-Y),

a13 = cos(xiAx 3 ) = 0,

a~l = cos(x•^xl) = cos(90°+y),

a'2 = cos(x2"x 2 ) = cos y,

a23 = cos(x2Ax3) = 0,

ail = cos(x'3 xl) = 0,

a. = cos(x9^x2  = 0,

ah3 = cos(x3j^x 3 ) = 1. (6.2.4)

In the crystal axes system, from Fig.6.2.2, we can write the unit vector
x211 along the axisx21

1 x2 X 1 x3' (6.2.5)2 1 x /- 2 - 3

45



where x1, X21, x 31 are unit vectors along the three crystal principal axes.
This is obtained by considering the intercept of the (111) crystal plane

on xj axis as (a,0,0) and then by translating the origin by (-, _3 -) to
the substrate center to give the point coordinates as (a, - 1, - •)" Here,

a is the crystal lattice constant. The unit vector pointing from the
origin (0,0,0) to this point is given by Eqn.(6.2.5). The unit vector x3

along the direction perpendicular to the (111) plane is given from analytical
geometry as

^ 1 ^ 1 ^ 1 ^-x' -x+ - .
x 1 1 21 3 . (6.2.6)

The unit vector x 1̂ = x1' x x^ 1 and is given by

X = - x' * + 2 xA3 (6.2.7)

Using Eqns.(6.2.5-6.2.7) gives

al = cos(x1 x1) = 0,

al= cos(xi^x") = cos(35.264°) = 2/N6,"1 2

all cos xjx") cos(54.736) = 113,a13 3o~

al= cos(xj"x") = cos(135°) = - 1/2,

al 2 = cos(x2 x2) = cos(114.095°) = - 1W16,

all3 = cos(xj x") = cos(54.736°) = 11W3,

al= Cos(xj x") = cos(45°) = 1/12,

all2 = cos(xj x") = cos(114.095°) = - 11A6,

al3 = cos(xj x") = cos(54.736°) = 1/13. (6.2.8)
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Using Eqns.(6.2.4) and (6.2.8), we can get the direction cosines aij
from Eqn.(6.2.3). These are given by

a1  2 cos(90O+y),

a12 - cos Y,

a 13 =

a21  Cos _ 1 cos (90°+y),
a = - -6

a22 1 cos(90"y)- -- cos y,

a2 3 =

1 Cos y- cos (90°+y),

a 32  cos(900-y) _ 1 cos y,

a 3 1 (6.2.9)a33 v-3

For the special case when the loading axis x2  coincides with the axis

x , y = 0 and

_ 1 1
a 11= 0, a 12 - , a13 - , a21 = - -,a 2 2 =

a 23 • a 3 1 - a3 2 = - -, , and a3 3 - .

For any other value of y, the direction cosines are given by Eqn.(6.2.9).

6.3 Piezo-Optic Coefficients for Gallium Arsenide from the Elasto-Optlc and
the Stiffness Coefficients

In this section, the piezo-optic coefficients for GaAs are derived from
the elasto-optic and the stiffness coefficients. The notations used by
Nye [8] are followed. The compliance is denoted by s, the stiffness by c,
the elasto-optic coefficients by p, and the piezo-optic coefficients by iv.
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All of these parameters are fourth-rank tensors with each of them having a
total of possible 81 terms. The generalized form of Hooke's law can be
written as:

e.J kR. Sijkt•ki (k=1,2,3; t=1,2,3), (6.3.1)

where k and t are summation indices, the eij denotes strain, the Okt
denotes stress, and the silkI denotes crystal compliance. Equation (6.3.1)
can also be written in an alternate form as

°lJ =k,.t ijkt6kt (k=1,2,3; t.=1,2,3), (6.3.2)

where cljkj are the stiffness constants of the crystal. For both Sijkl
and cijktk, the following relations are true

Sijk. = s ijtk = Sjik. = sjitk,

and

C44k - -c - (6.3.3)
CJki = cj2.k 2 Cjik" = cjitkk

Using the reduced notation of Nye as given in Table 2.1.1, Eqns.(6.3.1) and
(6.3.2) can be written as

{I= • S5j0 (i,j=1,2,...,6),

and

01 = X cijhj (i,J=1,2,...,6). (6.3.4)

However, changing the notation from tensor to matrix introduces factors of 2
and 4 as follows. For the compliances:

Sijkl = Smn when m and n are 1, 2 or 3,

2sijkR. = Smn when either m or n are 4, 5 or 6,

4 sijkt = Smn when both m and n are 4, 5 or 6. (6.3.5)

However, for the stiffness no factors of 2 or 4 are necessary. It can simply
be written as:

Cljkt - Cmn (i,j,k,1=1,2,3; m,n=1,2,...,6). (6.3.6)

The total maximum possible number of non-equal elements after taking into
account the identities (6.3.3) is 36. However, as the crystal possesses more .
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and more symmetry elements, the number of non-equal parameters reduces. For
the cubic crystals, this number becomes only three with the matrix elements
given by

X-11  X 12  x12 0 0 0
x12 xl1 x12 0 0 0

x 12  x 12  x11  0 0 0

0 0 0 x44 0 0

0 0 0 0 x4 4  0

0 0 0 0 0 x4 4  (6.3.7)

where x can stand for c, s, p, or w.

For cubic systems, sill s12, s44 and c11 , c1 2, c4 4 , are
related by [8]

S11 + s12 =
(s 1 1-s 12 )(s 1 1 +2s 1 2 ) ill

- s12 c"
(S11 - s12)(sll+2s12) =

and 1 (6.3.8)an 44 = c44.

Solving the above equations for s61 and 612, we get:

C11 + c 12
1= (c 1 1-c 1 2 )(c 11 +2c 12 ) '

""__ c 12 (6.3.9)
s12 = (c 1 1-c 12 )(c 1 1 +2c 12 ) (

In the absence of any applied electric field, the change in the
dielectric impemeability due to the strain can be given as [8]

AB ij r,s Pljrss (r=1,2,3; s=1,2,3), (6.3.10)

where

Pijrs = 1 "ijktckkrs (k=1,2,3; t=1,2,3), (6.3.11)

k,t

and

i = P PijrsSrski (r=1,2,3; s=1,2,3). (6.3.12)
r,s
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The elasto-optic coefficients Pijrs are dimensionless, whereas the piezo-
optic coefficients Wljkt have the dimension of stress. Both 1T and p follow
the same matrix form in reduced notation as given in Eqn.(6.3.7).

Equation (6.3.12) can be written in the reduced form as:

tmn P PmrSrn (ral,2,...,6), (6.3.13)

where m and n can take on values between 1 and 6. However, for cubic
systems, as is the case here, the only possible values of non-zero and
non-equal components are T11, 112, and w44. The non-zero components
are defined by the identities

1) ir1 1  1 I22  i •331

2) it1 2 =1 2 3  1 r31 'm11 3 m1 32 1 2 1,

3) 1T4 4 = T5 5 = 66"

The rest of the components are zero.

From Eqn.(6.3.13)

Ir11= I olrSrl (r=1,2,...,6)

r

= P11S11 + P12S21 + P13 S3 1 + P14 S4 1 + P15 S51 + P16'61'

Now, s21 = s31 = s12, P13 = P12 . and P14 = P15 = P1 6= 0. Therefore,

IT,,= p1 1sjl + 2p 12 s 12 " (6.3.14)

Similarly,

T12 = I PlrSr2 (r=1,2,...,6)

= P1ls12 + P12 s2 2 + P13 S32 + P14S4 2 + P15S52 + P16 S6 2 •

Remembering the above relations and also s22 = s11, the above equation
reduces to

it= P11s 12 + P12 (s 1 1 + s12)" (6.3.15)

Also,

*44 0 1 P4rSr4 (r=1,2,...,6)
r

= P41s14 + P42s24 + P43s34 + P44 s4 4 + P45S54 + P46s64

50



which reduces to

if44 = P4 4s 4 4 " (6.3.16)

The values of P11, P12, and P44, as well as of c1 1, c12, and
c44 are given in the paper by Booyens and Basson [9] and are shown in
"Table 6.3.1.

Table 6.3.1

The values of the elasto-optic coefficients (Pij) and the
stiffness (ciA) for GaAs after Booyens and Baslon [9]

(Pij are imensionless, cij are in dyne/cmz)

P1l P12  P4 4  c 1 C12  c4 4

-0.165 -0.14 -0.072 118.8 x 1010 53.8 x 1010 59.4 x 1010

The coefficients c11 are easily converted to the sij y Eqns. (6.3.8)
and (6.3.9). This yields Snl = 1.1728 x 10-1 cm /dyne, s12 -

-3.6558 x 10-12 cm2 /dyne, and s44 = 1.6835 x 10-1 cm2 /dyne.
Substituting for the values of s-i obtained above and the values of Pij
from Table 6.3.1 in Eqns.(6.3.14-6.3.16), one obtains the piezo-optic
coefficients as fnllows:

I 11 = - 9.115 x 10-14 cm2/dyne,

IT12 = - 5.269 x 10-14 cm2 /dyne,

and V 44 = - 1.212 x 10-13 cm2/dyne. (6.3.17)

However, for the nij, the following identities hold

'mn =*lijkI when n=1,2,3,

and

•mn = 2iljkT when n=4,5,6.

Taking into account the above identities, the piezo-optic coefficients for
GaAs are given as

it 1 11 1 = - 9.115 x 10-14 cm2 /dyne,

T1 12 2 = - 5.269 x 10-14 cm2 /dyne,

and

iT12 12 = - 6.061 x 10-14 cm2 /dyne. (6.3.18)
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